Powerful molecular DFT to understand chemistry
ÃÖÀûÈµÈ ºÐÀÚ ±¸Á¶, ÀüÀÌ»óÅ ±¸Á¶, ¹ÝÀÀ¼º, ´Ù¾çÇÑ ½ºÆåÆ®·³À» DFT¸¦ ÀÌ¿ëÇÏ¿© ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù.
»ó´ë¼º È¿°ú¸¦ °í·ÁÇÏ¸é¼ ÁÖ±âÀ²Ç¥ÀÇ ¸ðµç ¿ø¼ÒµéÀ» Áö¿øÇÏ°í ¼öÁØ ³ôÀº Á¤È®¼ºÀ¸·Î °è»êÇÒ ¼ö ÀÖ´Â STO all-electron basis setsÀ»
Á¦°øÇÏ¿© Áß¿øÀÚµéÀÌ Æ÷ÇÔµÈ ÀüÀ̱ݼÓÂø¹°, ³ª³ëÀÔÀÚ, À¯±âÀû ÀüÀÚ°øÇÐ ºÐ¾ß ¿¬±¸¿¡ ¸¹ÀÌ È°¿ëµË´Ï´Ù.

ÁÖ¿ä ±â´É
- Modern xc functionals, including latest dispersion corrections, double hybrids, and range-separated hybrids
- Self-consistent spin-orbit coupling TDDFT
- Charge transfer integrals, NEGF
- Many bonding analysis tools (EDA, ETS-NOCV, QTAIM, NCI)
- Fast G0W0 and RPA single point calculations
- QM/MM and QM/QM' calculations of arbitrary periodicity
- Slater-type orbitals: correct nuclear cusp (NMR, EPR)
- Environments and solvation: DIM/QM, FDE, COSMO, SM12

Periodic DFT for nanotubes, surfaces, and bulk
Accurate periodic density functional theory code·Î periodic DFT °è»ê¿¡ atomic orbitalsÀ» »ç¿ëÇÏ¿© plane waves ¹æ½Äº¸´Ù proper treatment of surfaces, efficient computations of sparse matter µî Á÷Á¢ÀûÀÌ°í ¼¼¹ÐÇÑ ºÐ¼® ¹æ¹ýÀ» Á¦°øÇÕ´Ï´Ù. °è»ê ¼Óµµ ¸é¿¡¼ ºü¸¥ °è»êÀÌ ÇÊ¿äÇÒ °æ¿ì¸¦ À§ÇØ plane wave codeÀÎ Quantum ESPRESSO¸¦ ÇÔ²² Á¦°øÇÕ´Ï´Ù.
ÁÖ¿ä ±â´É
- Model surfaces & nanowires as true 2D & 1D periodic systems
- All-electron basis sets for all elements
- Easy to treat core holes (X-ray)
- Relativistic effects treated efficiently and accurately with scalar ZORA
- Self-consistent spin-orbit coupling
- Homogeneous electric fields
- Continuum solvation with COSMO & SM12
- Calculate many spectra, orbitals & density properties
- DFT-1/2 and model potentials (KTB-mBJ, GLLB-sc) for accurate band gaps

Fluid thermodynamics from quantum mechanics
COSMO-RS (COnductor-like Screening MOdel for Realistic Solvents) ¸ðµâÀº ¾çÀÚ¿ªÇÐ µ¥ÀÌÅ͸¦ ±â¹ÝÀ¸·Î À¯Ã¼¿Í ¿ë¾×ÀÇ ¿¿ªÇÐÀû
¹°¼ºµéÀ» ¿¹ÃøÇÕ´Ï´Ù.
ÁÖ¿ä ±â´É
- Solubilities, partition coefficients (log P, log kOW)
- pKa values (empirical fit improves predictions)
- Activity coefficients, solvation free energies, Henry's law constants
- Vapor pressures, boiling points, vapor-liquid diagrams binary and ternary mixtures (VLE/ LLE)
- Excess energies, azeotropes, miscibility gaps
- Composition lines, flash points
- Optimizing solvent mixtures for solubility or extraction

Fast approximate DFT for molecules, 1D, 2D and 3D
Density-Functional based Tight-Binding (DFTB)Àº ¹Ì¸® °è»êµÈ ÆÄ¶ó¹ÌÅ͵é°ú minimal basis, nearest-neighbor interaction¸¸À» °í·ÁÇÏ¿© DFT °è»êº¸´Ù ÈξÀ ÀûÀº °è»ê ½Ã°£À¸·Î Å« ½Ã½ºÅÛÀ» DFT °á°ú¿¡ ÁØÇÏ´Â ºñ±³Àû Á¤È®ÇÏ°Ô °è»êÇÕ´Ï´Ù.
ÁÖ¿ä ±â´É
- Optimize minima and transition states and quickly characterize them
- Periodic optimization under pressure
- Fast UV/VIS spectra and excited state geometries
- Doubly parallelized IR and VCD spectra, phonons, stress/strain
- Band structures, effective mass, Density of States, pDOS, Molecular Orbitals
- Advanced Molecular Dynamics and Monte Carlo
- Solvation with GBSA
- Charge transport with NEGF
Reactive MD with GUI and analysis tools
Reactive force field¸¦ ÀÌ¿ëÇÏ¿© ÈÇÐ ¹ÝÀÀÀÌ ÀϾ´Â large-scale systemsÀ» ¿¬±¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.
Reactive force fieldÀÇ °³¹ßÀÚÀÎ van Duin ±³¼ö ¿¬±¸±×·ì°ú °øµ¿ °³¹ßÇÏ¿© original ReaxFF code¸¦ º´·ÄÈ ¹× ÃÖÀûÈÇÏ¿© ¼ö½Ê¸¸°³ÀÇ ¿øÀÚ·Î ±¸¼ºµÈ È¥ÇÕ¹° ½Ã½ºÅÛµµ ÀÏ¹Ý µ¥½ºÅ©Åé ÄÄÇ»ÅÍ¿¡¼ °è»êÇÒ ¼ö ÀÖ½À´Ï´Ù.
Classical force field¿¡¼ ´Ù·ç±â ¾î·Á¿ü´ø ÀüÀ̱ݼӵ鵵 ´Ù·ê ¼ö ÀÖ°í ´Ù¾çÇÑ Á¶ÇÕÀ¸·Î 80°³ ÀÌ»óÀÇ ReaxFF force field¸¦ Á¦°øÇÕ´Ï´Ù.
Æ¯ÈµÈ ¸ðµ¨ ½Ã½ºÅÛ¿¡ ¸ÂÃç »õ·Î¿î ReaxFF parameter setsÀ» °³¹ßÇϰųª ±âÁ¸ÀÇ parameter setÀ» °³¼±ÇÒ ¼ö ÀÖµµ·Ï (re)parametrization toolÀ» Á¦°øÇÕ´Ï´Ù.
- Mechanical properties of epoxide polymer
- Fitting ReaxFF force field parameters with CMA-ES
ÁÖ¿ä ±â´É
- Analyze changing molecular composition and reaction pathways (ChemTraYzer), track surface reactions
- AMStrain: Create and manage training sets for ReaxFF re-parametrization
- Accelerate bond breaking with Collective Variable-driven Hyperdynamics
- Molecule gun and molecule sink: depositing atoms and molecules, CVD, sputtering processes
- Bond boost for cross-linking polymers
- Grand-Canonical Monte Carlo: reactivity under thermodynamic equilibrium conditions
- Force-bias Monte Carlo
- Various free energy methods and MD analysis via the PLUMED library
- Hybrid parallelization (MPI, openMPI)
- Thermal conductivity (T-NEMD)
- ACKS2 charge equilibration: correct long-range charge behavior (batteries, enzymes)
- eReaxFF: explicit electrons
Machine Learning Potential
ÈûÀåÀ» »ç¿ëÇÏ´Â ½Ã¹Ä·¹ÀÌ¼Ç ¿¬±¸¿¡ ÇÊ¿äÇÑ °è»ê ½Ã°£ Á¤µµÀÇ ºñ¿ëÀ¸·Î ºÐÀÚµ¿¿ªÇÐ ½Ã¹Ä·¹À̼Ç, Æ÷ÅÙ¼È ¿¡³ÊÁö Ç¥¸éÀ» Ž»öÇÒ ¼ö
ÀÖ´Â machine learning potential ÀÔ´Ï´Ù.
»çÀü ¸Å°³ º¯¼öÈ µÈ ¸ðµ¨ ANI-1ccx, ANI-2x¸¦ Á¦°øÇÏ¿© ¹Ù·Î °è»ê¿¡ Ȱ¿ëÇÒ ¼ö ÀÖ°í PiNN, SchNetPack, sGDML, TorchANI ¿£ÁøÀ»
ÀÌ¿ëÇÏ¿© »õ·Î¿î Æ÷ÅÙ¼ÈÀ» ¸¸µé ¼ö ÀÖ½À´Ï´Ù.